1、概念

      回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

   回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

     许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

   在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

       若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

       而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

    (1)针对所给问题,确定问题的解空间:

            首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

    (2)确定结点的扩展搜索规则

    (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法框架

     (1)问题框架

      设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

     (2)非递归回溯框架

   1: int a[n],i;
   2: 初始化数组a[];
   3: i = 1;
   4: while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
   5: {
   6:     if(i > n)                                              // 搜索到叶结点
   7:     {   
   8:           搜索到一个解,输出;
   9:     }
  10:     else                                                   // 处理第i个元素
  11:     { 
  12:           a[i]第一个可能的值;
  13:           while(a[i]在不满足约束条件且在搜索空间内)
  14:           {
  15:               a[i]下一个可能的值;
  16:           }
  17:           if(a[i]在搜索空间内)
  18:          {
  19:               标识占用的资源;
  20:               i = i+1;                              // 扩展下一个结点
  21:          }
  22:          else 
  23:         {
  24:               清理所占的状态空间;            // 回溯
  25:               i = i –1; 
  26:          }
  27: }

 

        (3)递归的算法框架

         回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

   1: int a[n];
   2: try(int i)
   3: {
   4:     if(i>n)
   5:        输出结果;
   6:      else
   7:     {
   8:        for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径
   9:        {
  10:            if(fun(j))                 // 满足限界函数和约束条件
  11:              {
  12:                 a[i] = j;
  13:               ...                         // 其他操作
  14:                 try(i+1);
  15:               回溯前的清理工作(如a[i]置空值等);
  16:               }
  17:          }
  18:      }
  19: }